
246

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Noble Ape’s Cognitive
Simulation:

From Agar to Dreaming and Beyond

Thomas S. Barbalet
Noble Ape, USA

ArtificiAl life, Noble
Ape ANd AgAr

There is no coherent, universally accepted history of
artificial life. The term artificial life was coined by
Christopher G. Langton in the late 1980s (Langton,
1997). From the late 1980s to the early 1990s a
number of popular and academic books covered the

topic of artificial life either as a surveying of the art
(Emmeche, 1991; Levy, 1992) or covering the au-
thor’s particular interests in artificial life (Dawkins,
1987). Contemporary practitioners of artificial life
tend to attribute one of these books as the basis for
their development - Dawkins’ Biomorphs (1987)
or Dawkins’ inspired possibilities (Ventrella, 2005;
Barbalet & Stauffer, 2006; Barbalet & De Jong,
2007) or Sims’ Blockies (1994) (Barbalet & Klein,
2006). Dawkins, Sims and the inspired practitioners’

AbstrAct

Inspired by observing bacterial growth in agar and by the transfer of information through simple agar
simulations, the cognitive simulation of Noble Ape (originally developed in 1996) has defined itself
as both a philosophical simulation tool and a processor metric. The Noble Ape cognitive simulation
was originally developed based on diverse philosophical texts and in methodological objection to the
neural network paradigm of artificial intelligence. This chapter explores the movement from biologi-
cal observation to agar simulation through information transfer into a coherent cognitive simulation.
The cognitive simulation had to be tuned to produce meaningful results. The cognitive simulation was
adopted as processor metrics for tuning performance. This “brain cycles per second” metric was first
used by Apple in 2003 and then Intel in 2005. Through this development, both the legacy of primitive
agar information-transfer and the use of this as a cognitive simulation method raised novel computa-
tional and philosophical issues.

DOI: 10.4018/978-1-60566-705-8.ch010

247

 Noble Ape’s Cognitive Simulation

simulations were based on genetic algorithms.
Noble Ape was framed in the broadest possible

surveying of these books. No particular book was
the focused basis for the development. In fact,
Dawkins’ earlier work (1976) was considered
over Dawkins’ later work (1987) with regard to
the social framing of Noble Ape. Without any
guiding artificial life text, the foundational theme
of Noble Ape was that artificial life empowered
the developer to take from any area of interest
and assemble a testable simulation environment
to see how these theories inter-played. This was
a view born in isolation.

In 1996, the open source Noble Ape Simulation
was created to produce a rich biological environ-
ment and to simulate the movement and cognitive
processes of the Noble Apes, a sentient ape-like
creature that wandered through the simulated en-
vironment (Barbalet, 2005c). One of the primary
interests of the Noble Ape Simulation was the
development of simple societies and whether the
environment could contribute to the structure of
the societies created. Would a harsh environment
with limited food and water create an authoritarian
society? Would an environment teeming with food
and water produce a casual and contemplative so-
ciety? What would happen through transitions of
famine or war? How would the societies develop
through these experiences?

If there was a seminal theme through the
original development of Noble Ape it was through
the ideas of Logical Atomism (Russell, 1956).
These ideas were not developed in the age of
contemporary computing however they appeared
applicable through the description of sense-data
processing and the idea of atomic sense informa-
tion. Logical Atomism presented the idea that
sense data was provided in discrete processable
quantities. Through providing sense data over
time, the development of a coherent self could
be generated. These ideas were further refined
in Noble Ape Philosophic (Barbalet, 1997) into a
coherent means of taking the external world and
making an internal created representation. It is

important to note that this internal representation
can be without observable reference in terms of
relationships between the external information (or
the sense data presentation of the external infor-
mation) and the internal representation. This still
gave no indication of the method of processing. In
terms of the cognitive simulation it defined vision
(shorthand for all external sense data), the identity
which was the material of the cognitive simula-
tion, fear and desire. Fear and desire were the two
operators that acted on the identity to manipulate
the vision information over time.

The artificial life project closest to Noble Ape
was PolyWorld (Yaeger, 1994). Like Noble Ape,
PolyWorld was an example of the “intelligent
agents in a simulated environment” class of arti-
ficial life simulations. Although the projects were
completely independent, they shared a number
of the same high-level concepts - computational
genetics, physiology, metabolism, learning, vision
and behavior.

The primary distinctions between Noble
Ape and PolyWorld related to two components.
Noble Ape contained a more detailed simulated
environment, including an undulating topography,
a changing weather simulation and a biological
simulation containing a diversity of simulated flora
and fauna. The other distinction, and the subject
of this chapter, was the means of simulating the
intelligent behavior of the agents. PolyWorld used
a neural network model of intelligence. Noble
Ape did not.

The motivation not to use a neural network
intelligent agent model in Noble Ape was due to
Kirsh (1991). Kirsh asserted that simple processes
could provide “concept-free” intelligence which
was shared through all intelligent life from simians
to insects. This seemed plausible and also linked
well with Russell’s account of Logical Atomism.
Kirsh’s position was highly critical of traditional
artificial intelligence methods. Whilst Kirsh did
not name neural networks explicitly, the tenor of
his text was clearly against “highly cerebral activi-
ties” in intelligence modeling. Rather than being

248

Noble Ape’s Cognitive Simulation

a technical paper, Kirsh wrote a philosophical
critique of artificial intelligence which motivated
much of the early cognitive simulation develop-
ment in Noble Ape.

Without any clear technical description of
the means of concept-free sense-data processing
based on these foundational ideas in the initial
Noble Ape development, the only other simula-
tion mechanism available to the author was agar
simulations that had been developed prior to the
Noble Ape development as a means of learning
to program real-time graphics applications.

Through high school, the author took biology
courses that utilized agar studies. Materials like the
author’s hand and contact swabs had been place
in agar dishes. The contaminated agar dishes had
then been left to grow in warm, dark environments.
These agar dishes were studied in terms of popu-
lation growth and levels of bacteria based on the
known population growth rates. These kinds of
agar studies gave the author an early insight into
the agar medium and bacterial growth.

With the author’s interest in computer simula-
tions, agar simulations had been particularly useful
as they provided real-time movement over the
screen as the agar’s simulated bacterial plumes
took hold and died back. These simulations
represented an idealized biological environment
where one or potentially more populations of
organisms colonized the energy rich agar environ-
ment. In its simplest form, there was a numerical
array representation of the energy stored in each
agar cell and a population number indicating the
population density at that particular agar cell. Vari-
ous algorithms were used to produce population
growth, energy consumption and movement into
adjacent agar cells. These agar simulations were
a population cell occupation step from simpler
cellular automaton simulations. Although the agar
simulations did share some of the same spatial
spread processes.

In addition to artificial life books, the early
Noble Ape development was also heavily influ-
enced by “write your own computer game” books

(Isaaman & Tyler, 1982; Howarth & Evans, 1984).
These books discussed how to create fictional
environments and related mythos associated with
these kinds of games. From the inception of Noble
Ape, there needed to be a strong narrative relating
to the simulation. If the entities in the environment
were merely agent dots on the screen, the user
would be less likely to bond with the agents and
the simulation. The agents had to be humanoid
and the name “Noble Ape” gave a strong emotive
resonance with the user.

The development of the cognitive simulation
followed a familiar pattern to other aspects of the
Noble Ape development. A philosophical vision
directed by apparently unrelated source code that
converged back on the philosophical vision. It is
this element of cyclically re-enforced philosophi-
cal experimentation through source code that has
kept the author’s interest in the Noble Ape Simu-
lation for more than a decade and quite possibly
many more decades to come.

The development of the cognitive simula-
tion through agar simulation methods required
a clear vision with regards to the two primary
elements, fear and desire. Once the algorithm
was established, the cognitive simulation needed
to be tuned and the method chosen to tune the
simulation required a three dimensional, real-time
visual description of the cognitive simulation.
Once the simulation was tuned, it was adopted
by Apple and then Intel as a means of providing
a rich processor metric.

The cognitive simulation development did not
end after tuning or corporate use. It continues to
this day and offers a number of interesting future
projects both through Noble Ape and by third-
parties. Like PolyWorld and a number of other
contemporary mature artificial life simulations,
Noble Ape is intended to continue development
for many decades to come. It is not intended
to be a stand-alone complete project subject
to conclusion-testing. It continues to provide
insights to users and developers alike. Some of
these aspects will be discussed here, however

249

 Noble Ape’s Cognitive Simulation

Noble Ape should not be thought of as a static or
historical work.

This chapter is offered as an example of how
to take a divergent set of concepts from a number
of sources, including inspiration from the natural
world, and produce a coherent and unique solution.
It is intended to show not only the particular use
in the Noble Ape Simulation but also the potential
for this method to be used in other applications.

AgAr iNformAtioN
trANsfer ANd cogNitioN

The author’s interest in agar simulation predated
Noble Ape. It came from three sources - high school
biology coursework (as discussed), developing
computer anti-virus software and as a means of
showing time-evolving graphics. Writing anti-
virus software created an interesting byproduct - a
fascination in the heuristic analysis of infections
over networks and how these infections appeared
to replicate biological viruses. The computational
and biological infection graphs showed similar
properties and it intrigued the author sufficiently
to write simple agar simulations to confirm that
the simulated biology could replicate these growth
rates.

As with the similarities between Noble Ape
and PolyWorld, the agar simulations shared a
number of traits with cellular automaton simu-
lations (von Neumann & Burks, 1966). Rather
than single cellular automaton inhabiting each
array cell, a population of bacterial agents and
a corresponding energy value for that agar cell
over an array of agar cells was the basis of the
agar simulations.

At the same time, the author began to experi-
ment with simple real-time graphics and in particu-
lar the color capabilities of VGA. This produced
colorful agar bacterial growth simulations that
showed the growth and infection patterns on a
fullscreen display.

As an enhancement to the long-term visual
interaction, the agar simulations had end wrap-
around properties. This eliminated most problems
with boundary conditions and created effectively
an infinite simulation space for the simulated
bacterial spread. In addition to simulated bacterial
consumption of energy, energy regeneration and
growth was added. The idea that the simulated agar
including the bacteria and energy in the system
resulted in a zero sum was critical. The bacteria
once dead would be the food of the next genera-
tion. The bacteria-rich agar had to flourish through
wave after wave of bacterial plume. These agar
simulations were integer-based both in terms of
the energy level and the bacterial population but
also in terms of the grid coordinates. Each grid
coordinate represented an integer value of bacteria
population and energy.

Through these experiments many algorithms to
produce regenerating agar growth for great visual
effect were developed. All the simulations had an
information transfer function similar to:

It+1(x,y) = (It(x-1,y-1) + It(x,y-1) + It(x+1,y-1)
 + It(x-1,y) + (a * It(x,y))+ It(x+1,y)+ It(x-1,y+1)
 + It(x,y+1) + It (x+1,y+1)) / b (1)

where I was the information transfer meta-agar,
a was a weighting value to show the primacy
of the central reference and b is a normalizing
value. x and y were the cell coordinates. Whilst
not referring to cellular automaton, this equa-
tion is the simulated-agar equivalent of a Moore
neighborhood (1962).

This formula did not exactly replicate the ran-
dom fluctuations in the agar simulation but it gave
a good general equation for information transfer
over time. The experimentation with agar simula-
tions continued. The parameters that went into the
growth and death of the agar simulation and the
algorithms associated with energy consumption
and bacterial survival became less important. The
agar simulations all shared a similar pattern of

250

Noble Ape’s Cognitive Simulation

information transfer between the distinct popula-
tion and energy cells. This information transfer
became more interesting than the underlying agar
simulation.

This required a new mathematical method to
describe the information transfer rather than the
traditional agar simulation metrics of population
and energy fluctuation.

Over time the agar populations would move
outward through the agar at a rate of spread which
was algorithm dependent but always adhered to the
same characteristics. The spread described a spatial
wave-like property of the agar. This population
information transfer was an ethereal property of
the agar. This analysis begged the question - what
would happen if other kinds of information were
placed into this meta-agar information transfer
environment?

This meta-agar had both time resistive qualities
and also dissipation qualities which could be rep-
resented through quantized spatial and temporal
units as follows:

dIt+1(x,y)/ds = It(x-1,y) + It(x+1,y) + It(x,y-1)
 + It(x,y+1) (2)

dIt+1(x,y)/dt = It(x,y) - It-1(x,y) (3)

where x and y were the cell coordinates. I was the
information transfer meta-agar. dI/ds referred to
the spatial derivative and dI/dt was the time de-
rivative. Obviously through various simulations
there were constants of environment applied to
both dI/ds and dI/dt. This did not change the
underlying spatial and temporal properties. The
dI/ds algorithm is analogous to a Von Neumann
neighborhood (1966).

It is important to understand these two equa-
tions in terms of information transfer.

dI/ds propagates information through the
meta-agar and also defines how information can
be collected through the meta-agar. Aside from
information flowing from the center, there is also

a collection of information where the information
gradient is particularly favorable. There is nothing
that says that the total information has to remain
constant through these functions. The dI/ds can
be tuned to favor optimizing information piling
around like values. This is analogous to simpli-
fication and amplification.

dI/dt can also be tuned to allow for cycli-
cal resonance which, in concert with dI/ds, can
propagate particular information with greater
intensity. This is analogous to wave mechanics
in physics and the primary reason the physics
algebraic conventions are adhered to in describ-
ing the derivatives.

Noble Ape was created relatively rapidly. It
was formulated and first announced within a three
week period. This was achieved as a number of
the components of Noble Ape had been developed
through other coding projects. These components
included the terrain visualization, the real-time
mouse and keyboard interface and also file parser
code. Part of the underlying rationale behind
developing Noble Ape was to take the divergent
pieces of software the author had developed and
put them together.

The cognitive simulation was no exception. It
could have gone one of two ways. Prior to Noble
Ape in 1994, the author travelled through Malaysia
and Thailand. This provided a trilingual transfer
between the English language in the larger cities
to the Bahasa (Malay) language in the regional
parts of Malaysia to the Thai language. The three
languages were distinctly different but they all
mapped onto the same underlying meaning. This
begged the question - could a general language
analysis algorithm be developed to parse vast
quantities of a particular language and gener-
ate a syntactical-check? More importantly also
a meaning-check to construct meaning from a
substantial body of text. This idea became LaSiE
(the LAnguage Simplification Engine). As the
Philosophy of Language was also alluring to the
author through reading Bertrand Russell and his
student, Ludwig Wittgenstein (1953), Noble Ape’s

251

 Noble Ape’s Cognitive Simulation

cognitive simulation could have been an abstract
engineering of LaSiE. LaSiE was in part a spe-
cialized neural network algorithm, but also as the
name suggests it had a substantial phoneme reduc-
tion component to simplify the neural network.
Following extensive algorithm testing and modi-
fication relating to the best and most substantial
electronic texts of the time (Starr, 1994) amongst
others, the results were inconclusive. In contrast,
the meta-agar simulation provided more positive
results. The potential for this meta-agar to yield
an abstract but successful cognitive simulation
seemed likely.

There were still a number of problems. The
information transfer did not map well to visualiza-
tion information. A considerable amount of time
was spent exploring how the spatial visual infor-
mation could be translated into a two dimensional
cognitive simulation. The original vision method
had an eye simulator creating both simulated eyes’
two dimensional photographic renderings of the
outside world back into the cognitive simulation.
This was not feasible computationally.

The solution was to translate the outside world
into a scanning obstacle line - not like a radar or
sonar - but like a piece of string that stretched to
the nearest obstacle as a radial scan of the vision.
This idea was central to the development of the
Psi visualization method (Rushkoff, 1999).

It became evident that what was missing was an
additional dimension in the cognitive simulation -
it needed to be three dimensional (plus time evolu-
tion, obviously). The addition of a third dimension
clouded how the visualization information would
be put into the cognitive simulation and also how
point and line (versus linear) actuators would be
placed in the cognitive simulation.

In three dimensions, the Noble Ape cognitive
simulation was transformed to:

It+1(x,y,z) = (p * It(x,y,z)) + (q * dIt/ds(x,y,z))
 + (r * dIt/dt(x,y,z)) (4)

where

dIt(x,y,z)/ds = It(x-1,y,z) +It(x+1,y,z)
 + It(x,y-1,z) +It(x,y+1,z)
 + It(x,y,z-1) + It(x,y,z+1) (5)

dIt(x,y,z)/dt = It(x,y,z) - It-1(x,y,z) (6)

where x, y and z were the cell coordinates. p, q
and r were weightings to produce a normalized
value for It+1. dI/ds was labelled “desire” and dI/
dt was labelled “fear”. The origins of these names
have already been discussed with regards to the
Noble Ape Philosophic document. The algorith-
mic distinction of these two components were
subdivided and named for both methodological
and emotive reasons.

The methodological reasons related to the
mathematical primitives that also came through
the biological simulation. Noble Ape’s biological
simulation was based on quantum mechanics.
The landscape provided the wave function for
operators to be applied to determine the surface
area, directional gradient and other factors similar
to a wave function in quantum mechanics. The
landscape height map could be operated on to
provide additional biological information. The
surface area of the landscape at a particular point
indicated the amount of grass or moss that was
present. A greater surface area (characterized by
steep angles) meant trees could not grow. Similarly
the east/west traversing of the simulated sun pro-
vided an accurate indication of insect movement
and also where the most sun would be found over
the land area. These biological operators resolved
down to basic orthogonal primitives.

The same was observed with fear and desire.
The algorithmic effect of fear was a very rapid time
evolving reaction. Desire in contrast dissipated
in all directions leaving a shadow of previous
information. Fear and desire were orthogonal
and they contributed different properties to the
information transfer.

The final orthogonal component was the rep-
resentation of the information transfer itself. This

252

Noble Ape’s Cognitive Simulation

could be represented by contour lines through three
dimensional space. This captured the shape of the
evolving information transfer and indicated the
stability of the cognitive simulation. It was that
information transfer contour that was so useful
in tuning the cognitive simulation.

The emotive reasons behind naming the two
components of the equation fear and desire was
it allowed someone who was a mathematical
novice to get a clear understanding of what these
properties did in the cognitive simulation. The
description of fear as an instantaneous reaction
to rapid changes in stimulus gave a solid emo-
tive connection to both what the algorithm was
attempting to model in the cognitive simulation
but also with the user’s own experience. Similarly
the discussion of desire as being something which
motivated future judgements, future expectations,
future understanding and also desire as the great
simplifier, seemed to both describe the algorithmic
reality and resonate with the user’s experience
and understanding.

tuNiNg AN iNstrumeNt
iN A NoN-liNeAr Key

There is an ethereal quality in tuning a detailed
non-linear simulation that combines elements of
art, science and experience. Other simulators,
too, find it difficult to describe what is explicitly
needed to be able to tune artificial life simulations
(Barbalet & Stauffer, 2006; Barbalet & Daigle,
2006). Before exploring the tuning of the cognitive
simulation, it is important to explore the basics in
simulation tuning and then discuss the importance
of visualization to give accurate feedback.

In 1997, a high school science teacher in rural
Australia contacted the Noble Ape development
to ask if it would be possible to take just the eco-
logical simulation component of Noble Ape and
put it in a program that his high school students
could use. The ecological simulation in Noble Ape
contained the animal groups found through the

author’s travels in Malaysia (Cranbrook, 1987). As
already noted, the biological simulation dynamics
were based in principles from quantum mechanics.
The transition in simulated flora and fauna popu-
lations were covered with surface area integrals
and convolutions. The teacher’s requirements
were better served with extended Lotka-Volterra
equations (Volterra, 1931) where the notion of
predator-prey was expanded to include plants,
herbivores, carnivores and omnivores. From this
the collected species were phylum-grouped into
bushes, grass, trees, seed eating birds, sea birds,
birds of prey, insect eating birds, insects, mice,
frogs, lizards, apes, cats and fish. The fish repre-
sented the ocean fish population surrounding the
Noble Apes’ island and thus could be maintained
as a constant food source. This provided a rich
and complicated set of non-linear interactions that
evolved over time.

The feedback provided to the high school
teacher, in terms of teaching his students how to
tune the biological simulation, was to start with
a reduced subset of the species and look at how
these groups interacted over time. This in some
regard was analogous to learning to juggle by
starting with a couple of balls. Traditionally Lotka-
Volterra mathematics had been taught with two
dimensional plotting to show stability conditions
in joining cycles. For so many species interactions,
this was impossible. The method of finding reoc-
curring values for all populations at known time
deltas was not applicable with plant, herbivore,
carnivore and omnivore interactions. After tens
of hours of play, the author was able to get five
species stability with occasional bursts into six or
seven species stability. It was a bridge too far for
the high school teacher and students.

Lotka-Volterra equations related to scalar
population numbers. This was in contrast to the
Noble Ape Simulation method which used area-
integration to show population predation through
overlapping habitat. The property of stability of
simulation over areas and volumes is a differ-
ent technique, but with similarities to the scalar

253

 Noble Ape’s Cognitive Simulation

analysis in terms of time-cycle changes.
When development began on Noble Ape, the

visualization of the cognitive simulation was
achieved with planar scans through the three
dimensional brain representation. This provided
little meaningful information bar a great aesthetic
draw to the user.

By 2000, a real-time rotating three dimensional
visualization method that showed the changes in
the cognitive simulation to a high level of detail
was implemented (Barbalet, 2004). This, in turn,
enabled the cognitive simulation variables to be
tuned with real-time graphical feedback. Whilst
this was not analogous to the cyclical graphs of
Lotka-Volterra tuning, it enabled stable constants
to be found for both the awake and asleep aspects
of the cognitive simulation)(Figure 1).

The simulation needed to model the proper-
ties of sleep in terms of dreaming and problem
resolution analogous to human and mammalian
sleep cycles. The Noble Apes would need to be
able to have some dreams they could remember
and use the sleep environment to distill long-term
goals. Ideally the quantifiable transition between
awake and asleep could be transitioned for ad-
ditional feedback.

The elements of the cognitive simulation had
already been defined through the Noble Ape
Philosophic document. The implementation of
constants for the sleep and awake states of the
cognitive simulation had to be regulated around
those orthogonal ideas. This created an interesting
mix of applied method weighed against philo-
sophical methodology.

This method of creating graphically stable
simulations with applied theories was well defined
through the biological simulation tuning and the
author’s earlier work with agar simulations. The
constants that emerged would ultimately be scalar
weightings to multi-dimensional equations. The
philosophy of fear and desire, the identity and
ultimately Logical Atomism was also a heavy
consideration in the simulation tuning but the
simulation needed to operate with stability first

and foremost. With these apparently competing
ideas, the simulation constants found in March
2001 following months of simulation tuning were
particularly interesting (Barbalet, 2008).

In the awake brain simulation:

It+1 = ((It * 0) + (dIt/ds * 171)
 + (dIt/dt * 146)) / 1024 (7)

In the asleep brain simulation:

It+1 = ((It * 501) + (dIt/ds * 86)
 + (dIt/dt * 73)) / 1024 (8)

Whilst awake the cognitive simulation existed
purely on instinct coming from desire (the dI/ds
multiplier) and fear (the dI/dt multiplier). Desire
played a slightly heavier role in both awake and
asleep states, but the fear and desire elements
were both roughly halved during sleep with a
substantial residual identity maintaining through
the sleep versus none in the awake state.

For Noble Apes that were unable to sleep, in
conditions of drowning or for other similar extreme
reasons, the effects in the cognitive simulation
would be quite dramatic indicating the level of
trauma the Noble Ape was suffering.

Two important points should be noted with the
final six constants that came through the applied
analysis of the three dimensional graphical output
of the cognitive simulation.

These results may not be unique. In fact there
is a good range around the constants (tested to
+/- 5 in all cases) that yielded the same kind of
stability. It is to be determined if there are unique
properties associated with these number ranges.
It has been a useful byproduct to allow users the
freedom to choose their own constant weighting
or variations of cognitive simulation constants to
allow experimentation with the outcome through
these ranges and their range boundaries.

The subjective nature of the non-mathematical
to mathematical mapping of fear and desire and
the narrative historical description of the Noble

254

Noble Ape’s Cognitive Simulation

Figure 1. An example of the Noble Ape cognitive simulation visualization through general movement
paused at 11.25 degree rotations

255

 Noble Ape’s Cognitive Simulation

Ape Simulation development could indicate an
implicit yet predetermined outcome. This is a fair
criticism. The results captured the almost circular
philosophical outcomes of creating a mathematical
modeling method that described two orthogonal
operators and the insight into awake and asleep
states of the resultant mathematical simulation.

Both these points merit further investigation.
The apparent dampening of the cognitive

simulation through the large total divisor (1024)
may appear a point of concern for information
persistence. This analysis comes through passive
observation. It should be noted that this dampen-
ing actually forces dynamic structure propagation
through the cognitive simulation which explicitly
beats this dampening. This can be observed in the
Noble Ape Simulation but merits further descrip-
tive investigation and analysis (Figure 2).

Through tuning the cognitive simulation, the
description of sleep in a quantifiable sense may
be considered with some interest. The sleeping
Noble Ape has a roughly halved awake-state
combination of fear and desire but also maintains
a half residual identity component which doesn’t
exist when awake. As with real animals, the Noble
Apes remain relatively paralyzed during sleep. It
would be an interesting experiment to simulate the
dreamt movements of Noble Apes as an additional
psychological tool to understand the Noble Apes
thought processes a little better.

Applied use of the
cogNitive simulAtioN

Without the interest of two engineers at Apple,
Nathan Slingerland and Sanjay Patel, Noble Ape’s
cognitive simulation would have continued as an
open source curio. In early 2003, they asked to use
Noble Ape as an example for new optimization
techniques that Apple wanted to display to their
third party developers. The two techniques related
to thread balancing the cognitive simulation and

rewriting the cognitive simulation optimized for
AltiVec vector processing (Barbalet, 2005b).

The cognitive simulation had been optimized
heavily to minimize the mathematical instruc-
tions that went into the tight loop focused around
quadrants characterized as positive and negative,
lower and upper halves (Barbalet, 2008). These
minimized the use of binary ANDs on edge limits.
The brain is defined as a 32 x 32 x 32 byte array
(32768 bytes) with a previous time cycle cached
brain (old brain).

#define B_SIZE (32768)
#define B_WR (B_SIZE - 1)
#define F_X (1)
#define F_Y (32)
#define F_Z (1024)
#define B_Z (B_SIZE - F_Z)
#define B_Y (B_SIZE - F_Y)
#define B_X (B_SIZE - F_X)
/*
 * The basic brain formula is;
 * b(t+1) = a*l + b(t)*m + (b(t)-b(t-
1))*n;
 *
 * The waking mind works differently to the
sleeping mind. This is quantified
 * with two distinct but similar equations.
There are two versions for the awake
 * and asleep states, in this function it
is simplified to;
 * b(t+1) = a*l_a + b(t)*l_b - b(t-
1)*l_c;
 *
 * where, l_a = l, l_b = m+n, l_c = n
 */
#define B_FN(ave, bra, obra)
((((ave)*l_a)+((bra)*l_b)-((obra)*l_c))>>10)
/* positive and negative, lower and upper
halves */
#define B_P_LH (br[loc+F_X]+br[loc+F_Y]+b
r[loc+F_Z])
#define B_P_UH (br[loc-F_Z]+br[loc-
F_Y]+br[loc-F_X])
#define B_N_LH (br[(loc+F_X)&B_
WR]+br[(loc+F_Y)&B_WR]+br[(loc+F_Z)&B_WR])
#define B_N_UH (br[(loc+B_Z)&B_
WR]+br[(loc+B_Y)&B_WR]+br[(loc+B_X)&B_WR])
typedef unsigned char n_byte;
typedef unsigned short n_byte2;
typedef long n_int;
void brain_cycle(n_byte * local, n_byte2 *
constants) {
 n_byte *br = local, *obr = &local[B_
SIZE];
 n_int l_a = constants[0], l_c = con-
stants[2];

256

Noble Ape’s Cognitive Simulation

Figure 2. An example of the Noble Ape cognitive simulation visualization resolving multiple dynamic
structures paused at 11.25 degree rotations

257

 Noble Ape’s Cognitive Simulation

 n_int l_b = constants[1] + l_c, loc = 0;

 while (loc < F_Z) {
 n_int average = (B_P_LH + B_N_UH);
 n_byte obr_tmp = obr[loc];
 n_byte br_tmp;
 obr[loc] = br_tmp = br[loc];
 br[loc++] = (n_byte)(B_FN(average, br_
tmp, obr_tmp));
 }
 while (loc < B_Z) {
 n_int average = (B_P_LH + B_P_UH);
 n_byte obr_tmp = obr[loc];
 n_byte br_tmp;
 obr[loc] = br_tmp = br[loc];
 br[loc++] = (n_byte)(B_FN(average, br_
tmp, obr_tmp));
 }
 while (loc < B_SIZE) {
 n_int average = (B_N_LH + B_P_UH);
 n_byte obr_tmp = obr[loc];
 n_byte br_tmp;
 obr[loc] = br_tmp = br[loc];
 br[loc++] = (n_byte)(B_FN(average, br_
tmp, obr_tmp));
 }
}

The Apple engineers took a single cycle of the
brain calculation and optimized it into a 16-bit
pipeline which allowed eight independent brain
cycles to be calculated simultaneously (Barbalet,
2005b).

 average = br[loc_MINUS_X] + br[loc_
MINUS_Y]; // 16-bit precision
 average += br[loc_MINUS_Z] + br[loc_
PLUS_X]; // 16-bit precision
 average += br[loc_PLUS_Y] + br[loc_
PLUS_Z]; // 16-bit precision
 obr_tmp = obr[loc]; // 8-bit precision
 obr[loc] = br_tmp = br[loc]; // 8-bit
precision
 nbr_tmp = var_a * average; // 32-bit
precision
 nbr_tmp += var_b * br_tmp; // 32-bit
precision
 nbr_tmp -= var_c * obr_tmp; // 32-bit
precision
 nbr_tmp = nbr_tmp >> 10; // 32-bit pre-
cision

 br[loc] = nbr_tmp; // 8-bit precision

The Apple engineers proposed a 16-bit arith-
metic pipe where the following was divided into
high 16-bit and low 16-bit arithmetic.

 nbr_tmp = var_a * average; // 32-bit
precision
 nbr_tmp += var_b * br_tmp; // 32-bit
precision
 nbr_tmp -= var_c * obr_tmp; // 32-bit
precision
 nbr_tmp = nbr_tmp >> 10; // 32-bit pre-
cision

The brain cycles per second is equal to the
number of individual brain cycles calculated every
ten seconds divided by ten. If there were a troop
of sixty apes and in ten seconds there were six
full simulation cycles, the ape brain cycles per
second would be;

60 * 6 / 10 = 36 ape brain cycles per second.

There were two reasons the ape brain cycles per
second metric was useful. It provided a thorough
arithmetic pipeline through the vector implemen-
tation which indicated the processor was heavily
loaded. Similarly Noble Ape’s multi-window
real-time graphical feedback environment shared
the processor load with the ape brain calculations.
This showed the impact the GUI interaction had
on a separate but interdependent section of the
code.

Intel’s optimization for SSE, implemented by
Justin Landon, Michael Yi and Pallavi Mehrotra,
also included a simplification in the desire calcu-
lation to limit the switching between referencing
the current brain and the previous brain cycle’s
memory. This minimized the memory traversal
through the calculation.

static inline void brain_avg(__m128i *avg_
hi, __m128i *avg_lo, int loc, char *br, char
*obr) {
 int _v1 = (loc + F_X) & B_WR;
 int _v2 = (loc + F_Y) & B_WR;
 int _v3 = (loc + F_Z) & B_WR;
 int _v4 = (loc + B_Z) & B_WR;
 int _v5 = (loc + B_Y) & B_WR;
 int _v6 = (loc + B_X) & B_WR;
 int _v1_lo = _v1 & ~0x0F;
 int _v6_lo = _v6 & ~0x0F;
 int _v1_hi = (_v1_lo + 0x10) & b_eand;
 int _v6_hi = (_v6_lo + 0x10) & b_eand;
 __m128i a_hi = _mm_load_si128((__m128i*)

258

Noble Ape’s Cognitive Simulation

((_v1_hi < loc ? obr : br) + _v1_hi));
 __m128i a_lo = _mm_load_si128((__m128i*)
((_v1_lo < loc ? obr : br) + _v1_lo));
 __m128i a = _mm_or_si128(_mm_srli_si128(
a_lo, 1), _mm_slli_si128(a_hi, 15));
 __m128i b = _mm_load_si128((__m128i*)((
_v2 < loc ? obr : br) + _v2));
 __m128i c = _mm_load_si128((__m128i*)((
_v3 < loc ? obr : br) + _v3));
 __m128i d = _mm_load_si128((__m128i*)((
_v4 < loc ? obr : br) + _v4));
 __m128i e = _mm_load_si128((__m128i*)((
_v5 < loc ? obr : br) + _v5));
 __m128i f_hi = _mm_load_si128((__m128i*)
((_v6_hi < loc ? obr : br) + _v6_hi));
 __m128i f_lo = _mm_load_si128((__m128i*)
((_v6_lo < loc ? obr : br) + _v6_lo));
 __m128i f = _mm_or_si128(_mm_srli_si128(
f_lo, 15), _mm_slli_si128(f_hi, 1));
 __m128i zer = _mm_setzero_si128();
 __m128i tmp1 = _mm_add_epi16(_mm_unpack-
hi_epi8(a, zer), _mm_unpackhi_epi8(b, zer
));
 __m128i tmp2 = _mm_add_epi16(_mm_unpack-
hi_epi8(c, zer), _mm_unpackhi_epi8(d, zer
));
 __m128i tmp3 = _mm_add_epi16(_mm_unpack-
hi_epi8(e, zer), _mm_unpackhi_epi8(f, zer
));
 *avg_hi = _mm_add_epi16(_mm_add_epi16(
tmp1, tmp2), tmp3);
 tmp1 = _mm_add_epi16(_mm_unpacklo_epi8(
a, zer), _mm_unpacklo_epi8(b, zer));
 tmp2 = _mm_add_epi16(_mm_unpacklo_epi8(
c, zer), _mm_unpacklo_epi8(d, zer));
 tmp3 = _mm_add_epi16(_mm_unpacklo_epi8(
e, zer), _mm_unpacklo_epi8(f, zer));
 *avg_lo = _mm_add_epi16(_mm_add_epi16(
tmp1, tmp2), tmp3);
}
static inline __m128i SSE_ B_FN (__m128i
aver_hi, __m128i aver_lo, __m128i sse_
local_a, __m128i sse_local_b, __m128i
sse_local_c, __m128i sse_br_tmp, __m128i
sse_obr_tmp)
{
 const __m128i mask = _mm_set1_epi32(0xff);
 __m128i sse_zero = _mm_setzero_si128();
 __m128i brain_lo, brain_hi, obrain_lo,
obrain_hi;
 __m128i result_01, result_02, result_03,
result_04, result_05, result_06;
 brain_lo = _mm_unpacklo_epi8 (sse_br_tmp,
sse_zero);
 brain_hi = _mm_unpackhi_epi8 (sse_br_tmp,
sse_zero);
 obrain_lo = _mm_unpacklo_epi8 (sse_obr_
tmp, sse_zero);
 obrain_hi = _mm_unpackhi_epi8 (sse_obr_
tmp, sse_zero);
 result_01 = _mm_unpacklo_epi16 (sse_
local_a, sse_local_b);
 result_02 = _mm_unpacklo_epi16 (aver_lo,
brain_lo);

 result_02 = _mm_madd_epi16 (result_01,
result_02);
 result_03 = _mm_unpackhi_epi16 (aver_lo,
brain_lo);
 result_03 = _mm_madd_epi16 (result_01,
result_03);
 result_05 = _mm_mullo_epi16 (obrain_lo,
sse_local_c);
 result_04 = _mm_mulhi_epi16 (obrain_lo,
sse_local_c);
 result_02 = _mm_sub_epi32 (result_02,
_mm_unpacklo_epi16 (result_05, result_04)
);
 result_02 = _mm_srli_epi32 (result_02, 10
);

 result_03 = _mm_sub_epi32 (result_03,
_mm_unpackhi_epi16 (result_05, result_04)
);
 result_03 = _mm_srli_epi32 (result_03,
10);
 result_02 = _mm_packs_epi32 (_mm_
and_si128(result_02, mask), _mm_and_
si128(result_03, mask));
 result_03 = _mm_unpacklo_epi16 (aver_hi,
brain_hi);
 result_04 = _mm_madd_epi16 (result_01,
result_03);
 result_03 = _mm_unpackhi_epi16 (aver_hi,
brain_hi);
 result_05 = _mm_madd_epi16 (result_01,
result_03);
 result_03 = _mm_mullo_epi16 (obrain_hi,
sse_local_c);
 result_06 = _mm_mulhi_epi16 (obrain_hi,
sse_local_c);
 result_04 = _mm_sub_epi32 (result_04,
_mm_unpacklo_epi16 (result_03, result_06)
);
 result_04 = _mm_srli_epi32 (result_04,
10);
 result_05 = _mm_sub_epi32 (result_05,
_mm_unpackhi_epi16 (result_03, result_06)
);
 result_05 = _mm_srli_epi32 (result_05,
10);
 result_04 = _mm_packs_epi32 (_mm_
and_si128(result_04, mask), _mm_and_
si128(result_05, mask));
 result_02 = _mm_packus_epi16 (result_02,
result_04);
 return result_02;
}
void brain_vect_cycle(n_byte *local, n_
byte2 *constants) {
 __m128i local_a = _mm_set1_epi16(con-
stants[0]);
 __m128i local_c = _mm_set1_epi16(con-
stants[2]);
 __m128i local_b = _mm_set1_epi16(con-
stants[1] + constants[2]);
 __m128i *br = (__m128i*)local;

259

 Noble Ape’s Cognitive Simulation

 __m128i *obr = (__m128i*)&local[32 * 32 *
32];
 int i = 0;
 for(i = 0; i < B_SIZE/16; i++) {
 int loc = i * 16;
 __m128i avg_lo, avg_hi;
 brain_avg(&avg_hi, &avg_lo, loc,
(char*)br, (char*)obr);
 __m128i br_tmp = _mm_load_si128(br + i
);
 __m128i obr_tmp = _mm_load_si128(obr +
i);
 _mm_store_si128(obr + i, br_tmp);
 __m128i ret = SSE_ B_FN(avg_hi, avg_lo,
local_a, local_b, local_c, br_tmp, obr_tmp
);
 _mm_store_si128(br + i, ret);
 }
}

Both Apple’s AltiVec and Intel’s SSE imple-
mentations hinged on 128-bit processing pipes.
It is foreseeable that these concepts will date
quickly as many more orders of these processing
pipes become the norm. The underlying principles
should continue to be useful.

future directioNs

The cognitive simulation in Noble Ape, described
here, is based on very simple definitions for the
interaction between dI/ds and dI/dt. The differen-
tial interactions for dI/ds can be expanded further.
In fact the dimensionality of the Noble Ape brain,
as described, favors no particular direction. It was
developed to optimize the propagation of infor-
mation throughout the brain. We can consider the
possibility of changing the cognitive algorithm to
something that distinguishes between the spatial
dimension. The cognitive equation then could be
rewritten as:

It+1 = (m * It) + (n * dIt/dx) + (o * dIt/dy)
 + (p * dIt/dz) + (q * dIt/dt) (9)

where m is a normalizing weighting, n, o and p are
dimensional skewing desire weightings and q is a
fear weighting. Or consider an additional weight-

ing that was applied to the cognitive simulation
to one or all of the constant parts:

It+1(x,y,z) = p(x,y,z) * It(x,y,z)
 + q(x,y,z) * dIt/ds(x,y,z) + r(x,y,z)
 *dIt/dt(x,y,z) (10)

where p, q and r are location dependent weightings.
Transition in the cognitive simulation between the
Noble Apes falling asleep and waking up could
be linearly interpolated:

It+1(x,y,z) = p(t) * It(x,y,z) + q(t) * dIt/ds(x,y,z)
 + r(t) * dIt/dt(x,y,z) (11)

where p, q and r are time dependent cognitive
simulation weightings that linearly transition
between sleep and awake states based on the time.
It begs the question if such a transition would
yield the kind of stability found in the awake and
asleep defined states through the weighted basis
of these variables.

To-date the cognitive simulation has been
volatile. The brain values are not retained between
simulation runs and the cognitive simulation
produces the only non-determinate element to the
Noble Ape Simulation. Due to the three dimen-
sional spatial representation of the brain model,
compression algorithms suited to this data will
be required for network transfer of the cognitive
simulation to seed additional simulations. It is
possible that binary tree spatial models be used to
reduce the brain space into smaller compressible
cubes and transmit this spatially reduced data over
networks faster. With this model either fixed or
variable size cubes will be optimized for reduced
bit variable length. For example, a group of values
in the range of 0 to 31 would be compressed into
5-bit variable space where 5 bytes would contain
eight of these 5-bit values.

The discussion of compression also raises the
possibility of brain cell sizes larger than bytes be-
ing used in the future. It is foreseeable that 16, 32

260

Noble Ape’s Cognitive Simulation

and 64 bit brain cell sizes be used for more subtle
changes in the cognitive simulation. Similarly the
size of the Noble Ape brains could increase from
32 x 32 x 32 to 128 x 128 x 128 or greater. Other
animals in the Noble Ape environment could be
cognitively modeled with smaller sub-set brains.
Predatory birds and cats could have 4 x 4 x 4 and
16 x 16 x 16 brains respectively.

This document has discussed the Noble Ape
cognitive simulation through algorithms and lan-
guage. Increasingly demonstrations of the Noble
Ape Simulation and its cognitive component
are given to audiences that require immediate
feedback. These demonstrations are exclusively
graphical and often given by demonstrators with-
out the mathematical and philosophical grounding
discussed in this document (Damer, 2008). The
visual demonstration of the cognitive simulation
requires descriptive and graphic distinctions be-
tween fear and desire to be drawn. These visual-
ization methods to actively identify the different
components in the shared algorithms that make
up the Noble Ape cognitive simulation may also
prove beneficial in teaching these techniques to
an audience quickly.

The Noble Ape Simulation contains a single
time-cycle scripting language, ApeScript. The
Noble Ape file format and ApeScript allows the
expert user to both experiment with the existing
cognitive simulation, manipulate the cognitive
simulation’s identity, fear and desire weightings
and also devise their own cognitive simulation
algorithms (Barbalet, 2005a).

Whilst it has not been the topic of this chapter,
some attention to comparing and contrasting the
response time and dynamic adaption of the Noble
Ape cognitive simulation versus more traditional
neural network models is an ongoing area of inter-
est and development. As the Noble Ape Simulation
allows for multiple cognitive simulation models,
the potential to hybridize elements of PolyWorld
and the Noble Ape Simulation is being discussed at
the time of writing. This would provide a number
of additional metrics to measure the Noble Ape

cognitive simulation against the neural network
contained in PolyWorld.

It is possible that the cognitive simulation
method described here could be implemented
next to a neural network to provide distinct modes
of information processing for different circum-
stances. The Noble Ape cognitive simulation has
been optimized for immediate reaction with less
attention to long-term passive movement. The
comparative tests for the cognitive simulation
versus neural networks may relate to a number
of factors. These include;

The average life-time of a simulated •	
agent,
The average energy consumed per day by a •	
simulated agent,
The survival of a simulated agent through •	
difficult	 conditions	 (drought/famine	 and	
disease),
The survival of a simulated agent through •	
predation of a single predator species,
and,
The survival of a simulated agent through •	
predation of multiple predator species.

The Noble Ape cognitive simulation was
optimized to respond to the predation and sur-
vival concerns in particular. The ability to test the
cognitive simulation against and as a hybrid with
neural networks such as PolyWorld will further
strengthen this aspect of artificial life. This chapter
was written as an introduction to the Noble Ape
cognitive simulation method. There obviously is
a lot more to explore and quantize through the
cognitive simulation development.

New KiNds of thiNKiNg

The Noble Ape cognitive simulation represents a
new model - understanding information transfer
and basic intelligence in a dynamic environment.
The basis of the cognitive simulation in simple

261

 Noble Ape’s Cognitive Simulation

cellular information transfer is inspired by nature
through watching growth patterns in agar. The
insight and tuning the method provided has been
explored in the chapter.

The Noble Ape development, including the
cognitive simulation, is an ongoing work. The
theme of the development to-date has been juxta-
posing previously unrelated mathematical models
as a means of exploring what is possible through
conjunction. This is characterized here through a
“philosophy first” approach with the view that the
mathematics will follow. This allowed the explora-
tion of a variety of novel mathematical methods
for simulation. The skills described here in terms
of adapting and tuning mathematical methods
should provide inspiration for exploration.

The chapter has defined the mathematics and
methodology of the Noble Ape cognitive simula-
tion. However it does not eliminate the method
being used in other simulations for similar effects.
The cognitive simulation shows there are a number
of possible uses as a replacement to traditional
neural network models.

The advice to instill in new simulators looking
to embark on their own simulation development
is to ignore tradition. The respect of your peers
should come through radical diversity rather than
similar acceptance.

refereNces

Barbalet, T. S. (1997). Noble Ape Philosophic.
Noble Ape Website. Retrieved June 20, 2008,
from http://www.nobleape.com/man/philosophic.
html

Barbalet, T. S. (2004). Noble ape simulation. IEEE
Computer Graphics and Applications, 24(2), 6–12.
doi:10.1109/MCG.2004.1274054

Barbalet, T. S. (2005a). ApeScript Notes. Noble
Ape Website. Retrieved June 20, 2008, from http://
www.nobleape.com/man/apescript_notes.html

Barbalet, T. S. (2005b). Apple’s CHUD Tools,
Intel and Noble Ape. Noble Ape Website. Retrieved
June 20, 2008, from http://www.nobleape.com/
docs/on_apple.html

Barbalet, T. S. (2005c). Original Manuals, Noble
Ape 1996-1997. San Mateo, CA: Cafe Press.

Barbalet, T. S. (2008). Noble Ape Source Code.
Noble Ape Website. Retrieved June 20, 2008, from
http://www.nobleape.com/sim/

Barbalet, T. S., & Daigle, J. P. (2006). Interview
with John Daigle. Biota Podcast. Retrieved June
20, 2008, from http://www.biota.org/podcast/
biota_jdaigle_062506.mp3

Barbalet, T. S., & De Jong, G. (2007). Dawkins,
Memetics, Commerce and the Future: Part 2 of
3. Biota Podcast. Retrieved June 20, 2008, from
http://www.biota.org/podcast/biota_080407.
mp3

Barbalet, T. S., & Klein, J. (2006). Interview with
Jonathan Klein. Biota Podcast. Retrieved June
20, 2008, from http://www.biota.org/podcast/
biota_jklein_070806.mp3

Barbalet, T. S., & Stauffer, K. (2006). Interview
with Ken Stauffer. Biota Podcast. Retrieved June
20, 2008, from http://www.biota.org/podcast/
biota_kstauffer_080506.mp3

Cranbrook, E. (1987). Mammals of South-East
Asia. Singapore: Oxford University Press.

Damer, B. (2008). Demonstration of Noble Ape
Simulation at GreyThumb Silicon Valley. You-
Tube. Retrieved June 20, 2008, from http://www.
youtube.com/watch?v=YBWxFKv3zBk

Dawkins, R. (1976). The Selfish Gene. New York,
NY: Oxford University Press.

Dawkins, R. (1987). The Blind Watchmaker. New
York, NY: Norton.

Emmeche, C. (1991). The Garden in the Machine.
Princeton, NJ: Princeton University Press.

262

Noble Ape’s Cognitive Simulation

Howarth, L., & Evans, C. (1984). Write Your
Own Fantasy Games for Your Microcomputer.
London: Usborne.

Isaaman, D., & Tyler, J. (1982). Computer Space-
games. London: Usborne.

Kirsh, D. (1991). Today the earwig, tomor-
row man? Artificial Intelligence, 47, 161–184.
doi:10.1016/0004-3702(91)90054-N

Langton, C. G. (1997). Artificial Life: An Over-
view (Complex Adaptive Systems). Cambridge,
MA: MIT Press.

Levy, S. (1992). Artificial Life: A Report from the
Frontier Where Computers Meet Biology. New
York, NY: Pantheon.

Moore, E. F. (1962). Machine models of self-
reproduction. [Providence, RI: The American
Mathematical Society.]. Proceedings of Symposia
in Applied Mathematics, 14, 17–33.

Rushkoff, D. (1999). A technology genius has
Silicon Valley drooling - by doing things the
natural way. The Guardian. Retrieved June 20,
2008, from http://www.guardian.co.uk/technol-
ogy/1999/oct/07/onlinesupplement17

Russell, B. (1956). The philosophy of logical atom-
ism. In R.C. Marsh (Ed.), Logic and Knowledge,
Essays 1901-50 (pp. 175-281). London: Allen
and Unwin.

Sims, K. (1994). Evolving Virtual Creatures. In
A. Glassner (Ed.), ACM SIGGRAPH: Computer
Graphics 1994 Proceedings (pp. 15-22). New
York, NY: ACM Press.

Starr, K. (1994). The Starr Report. New York,
NY: Public Affairs.

Ventrella, J. J. (2005). GenePool: Exploring the
Interaction Between Natural Selection and Sexual
Selection. In A. Adamatzky (Ed.), Artificial Life
Models in Software (pp. 81-96). London: Springer-
Verlag.

Volterra, V. (1931). Variations and fluctuations of
the number of individuals in animal species living
together. In R. N. Chapman (Ed.), Animal Ecology
(pp. 409–448). New York, NY: McGraw-Hill.

von Neumann, J., & Burks, A. W. (1966). Theory
of Self-Reproducing Automata. Urbana, IL: Uni-
versity of Illinois Press.

Wittgenstein, L. (1953). Philosophical Investiga-
tions. Oxford: Basil Blackwell.

Yaeger, L. S. (1994). Computational Genetics,
Physiology, Metabolism, Neural Systems, Learn-
ing, Vision, and Behavior or PolyWorld: Life in a
New Context. In C. Langton (Ed.), Proceedings
of the Artificial Life III Conference (pp. 263-298).
Reading, MA: Addison-Wesley.

